Las Positas
 College

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551-7650
(925) 424-1000
(925) 443-0742 (Fax)

Course Outline for MATH 1

CALCULUS I
Effective: Fall 2019
I. CATALOG DESCRIPTION:

MATH 1 - CALCULUS I - 5.00 units
An introduction to single-variable differential and integral calculus including: functions, limits and continuity; techniques and applications of differentiation and integration; the Fundamental Theorem of Calculus; areas and volumes of solids of revolution.
5.00 Units Lecture

Prerequisite

MATH 30 - College Algebra for STEM with a minimum grade of C

MATH 39 - Trigonometry with a minimum grade of C

Grading Methods:

 Letter GradeDiscipline:

- Mathematics

Lecture Hours:	90.00
Expected Outside	
of Class Hours:	180.00
Total Hours:	270.00

II. NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: 1
III. PREREQUISITE AND/OR ADVISORY SKILLS:

Before entering the course a student should be able to:

A. MATH30

1. Solve rational, linear, polynomial, radical, absolute value, exponential, and logarithmic equations;
2. Solve linear, nonlinear and absolute value inequalities;
3. Explore and apply rational, linear, polynomial, radical, absolute value, exponential, and logarithmic equations in context of applications;
4. Analyze functions graphically and investigate properties of functions;
5. Apply functions and other algebraic techniques to model real world applications in science, technology, engineering and mathematics;
6. Graph linear and nonlinear functions, including functions with radicals, exponential functions, absolute value functions, and logarithmic functions;
7. Apply transformations to the graphs of functions;
8. Synthesize results from the graphs and/or equations of functions;
9. Recognize the relationship between functions and their inverses graphically and algebraically;
10. Determine if a function has an inverse and find the inverse when it exists;
11. Apply techniques for finding real and complex zeros of polynomials and roots of equations.
12. Solve systems of equations and inequalities;
13. Analyze conics algebraically and graphically;
14. Find the terms of a sequence and the partial sums of a series;
15. Use formulas to find sums of finite and infinite series;
B. MATH39
16. Define trigonometric functions in terms of the right triangle, using coordinates of a point and distance from the origin, and using the unit circle;
17. State from memory the values for sine, cosine and tangent functions of common angles given in either degrees or radians;
18. Identify special triangles and their related angle and side measures;
19. State from memory the Pythagorean identities, reciprocal identities, quotient identities, double angle identities, and sum and difference identities for sine and cosine ;
20. Evaluate the trigonometric function of an angle in degree and radian measure;
21. Manipulate and simplify a trigonometric expression;
22. Solve trigonometric equations, including equations with multiple angles over different intervals, and solve triangles and applied problems;
23. Graph the basic trigonometric functions and apply changes in period, phase and amplitude to generate new graphs;
24. Evaluate and graph inverse trigonometric functions;
25. Develop and use trigonometric ratios or other trigonometric formulas to solve problems;
26. Develop and use the law of sines and law of cosines to completely solve an oblique triangle;
27. Convert between polar and rectangular coordinates and equations;
28. Graph polar coordinate equations.
29. Represent a vector (a quantity with magnitude and direction) in the form <a,b> and ai+bj.

IV. MEASURABLE OBJECTIVES:

Upon completion of this course, the student should be able to:
A. Evaluate the limit of a function at a real number;
B. Determine whether a function is continuous at a point or an interval;
C. Find and interpret average and instantaneous rates of change;
D. State the definition of the derivative as the limit of a difference quotient and use the definition to find the derivative of a function;
E. Interpret the derivative as the slope of a tangent line and find the equation of a tangent line to a function;
F. Explain the definitions of velocity and acceleration and use the derivative to find the velocity and acceleration of an object in motion, given the position function for the object;
G. State and apply the rules for differentiating algebraic and trigonometric functions.
H. Utilize the chain rule when differentiating functions;
I. Work with differentials and their applications;
J. Use calculus-based methods to analyze functional behavior;
K. Sketch the graphs of functions using the methods of calculus;
L. Find all maxima, minima and points of inflection of a function;
M. Use implicit differentiation;

N . Evaluate the limit of a function at infinity;
O. Apply differentiation to solve related rate and optimization problems;
P. Apply the Mean Value Theorem;
Q. Utilize Newton's Method;
R. Evaluate a definite integral as the limit of a Riemann sum;
S. Apply the Fundamental Theorem of Integral Calculus;
T. Evaluate integrals by the method of substitution;
U. Find areas between curves and volumes of solids of revolution;

V . Use the precise definition of a limit to prove a limit exists.

V. CONTENT:

A. Limits

1. Left-hand limits and right-hand limits
2. Computing limits
a. Numerically
b. Graphically
c. Algebraically
3. Limits of trigonometric functions
4. Limits at infinity
5. Precise definition of a limit
B. Average and instantaneous rates of change
C. Continuity
6. Definition of continuity
7. Continuity at a real number
8. Continuity on an interval
9. Discontinuous functions
a. Types of discontinuities
b. Removable discontinuities
D. Intermediate Value Theorem
E. Secant and tangent lines
F. Average and instantaneous rates of change; velocity and acceleration
G. Definition of the derivative as the limit of a difference quotient
H. Interpretation of the derivative
10. Slope of a tangent line
11. Rate of change
12. Derivative as a function
I. Differentiation formulas and techniques
13. Differentiation of constant-valued function
14. Power rule
15. Product rule
16. Quotient rule
17. Trigonometric functions
18. Chain rule
19. Implicit derivative
20. Higher-order derivatives
J. Applications of differentiation
21. Rate of change
22. Related rates
23. Optimization
K. Functional analysis
24. Mean Value Theorem
25. Critical numbers
26. Maximum and minimum values (absolute and local)
L. Curve sketching: algebraic, rational and trigonometric functions
27. First Derivative Test
28. Second Derivative Test
29. Test for Concavity and Points of Inflection
30. Extrema
31. Asymptotic behavior
a. Limits at infinity
b. Horizontal and vertical asymptotes
M. Differentials and their applications
N. Newton's Method
O. Antiderivatives
P. Definite integral
32. Interpretation as area under a curve
33. Defined as limit of a Riemann Sum
34. Evaluation of a definite integral as the limit of a Riemann Sum
Q. Indefinite integrals
R. Properties of definite and indefinite integrals

S . Fundamental Theorem of Calculus
T. Integration

1. As antidifferentiation
2. Method of substitution
U. Applications of integration
3. Area under a curve
4. Area between curves
5. Volume of a solid of revolution
V. Inverse functions
6. Differentiation of inverse functions

VI. METHODS OF INSTRUCTION:

A. Discussion -
B. Lecture -
C. Web- or CD-Rom-based tutorials
D. Student presentations
E. Collaborative learning

VII. TYPICAL ASSIGNMENTS:

A. Homework

1. Homework should be assigned from the text and should include a sufficient number and variety of problems to develop both skill and conceptual understanding. A typical assignment should that an average student 1 to 2 hours for each hour in class.
B. Collaborative learning
2. Collaborative learning, done in small groups of 2-4 students, can be used to introduce new concepts, build skills, or teach problem solving. Students may be asked to present their results on the board.
3. Example collaborative learning assignment: Have each group solve a curve-sketching problem and then present their work to the rest of the class, explaining the process they used and their results.

VIII. EVALUATION:

Methods/Frequency

A. Exams/Tests
minimum 4 exams and a comprehensive final exam
B. Quizzes

Announced or unannounced, in-class or take home at the discretion of the instructor
C. Home Work

Assigned for each section covered
D. Other

1. Collaborative Group Activities
a. At the discretion of the instructor

IX. TYPICAL TEXTS:

1. Hass, J.R., Heil, C.D., \& Weir, M.D. (2017). Thomas' Calculus: Early Transcendentals (14th ed.). Boston, MA: Pearson.
2. Stewart, J. (2016). Calculus (8th ed.). Boston, MA: Cengage.
3. Briggs, W.L., Cochran, L., \& Gillett, B. (2015). Calculus: Early Transcendentals (2nd ed.). New York, NY: Pearson.
X. OTHER MATERIALS REQUIRED OF STUDENTS:
A. Graphing calculator may be required
